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Abstract:

A new strategy is presented for the design of explorative experi-
ments in synthetic chemistry when the objective is to identify the
important experimental variables. The methodology is based on
Taylor expansion (response surface) models, and the principles
are: A grid of possible settings of the experimental variables is
laid out in the experimental domain. These experiments define a
candidate design matrix, DC. From DC, a candidate model
matrix, XC is defined by appending columns for each
variable in the Taylor model XC is then factored by singular
value decomposition (SVD), and XC ) USVT. The rows in
XC that are most parallel to the singular column vectors in
V are selected, and the corresponding experiments in DC

are identified. This gives the experimental design. The
selected experiments are nearly orthogonal, and they span
the dimensions of the model space. The experiments can
be run in sequence, and thus, they allow for a systematic
search, one experiment at a time. The design principles are
illustrated by an example of the dibromination of an acetal.
Four variables were studied, and from 12 experiments, all
the main effects and all two-factor interaction effects were
estimated. From the response surface model, conditions for
quantitative yield were predicted, and a mol-scale synthesis
carried out under these conditions afforded 98% yield of
the isolated pure, >97% product.

Introduction
When a synthetic procedure is to be developed into an

optimum process procedure it is often necessary to identify the
important experimental variables by a screening design and then
to adjust the procedure to an optimum performance by response
surface modelling or some kind of gradient search. This can,
however, be a tedious task that usually requires a large number
of individual experimental runs, and sometimes, there is not
time enough to do it.

This paper describes a strategy for designing experiments
in organic synthesis when the objective is to find experimental

conditions that can give improved yields. The procedure
described is intended as a tool when syntheses are transformed
from gram scale to hundreds of grams scale or to kilogram scale.

The strategy is based on experiments for which the variable
settings in each experiment are near-orthogonal to each other.
This allows for a systematic search of the experimental
conditions, including also possible interaction effects. The new
feature is that the experiments are run sequentially to peel off
the dimensions of the search space one by one. It is therefore
possible to stop the search when sufficiently good experimental
conditions have been found. This is to be contrasted with
factorial and fractional factorial designs for which all experi-
mental runs must be completed before the experiment can be
evaluated.

Requisites. It is supposed that the experimental procedure
that has been used on gram scale affords promising results and
the experimenter can assign which experimental variables are
likely to be influential. It is also assumed that the experimenter
can assign a possible operational domain and that it is believed
that improved experimental conditions are likely to be found
in the vicinity of the hitherto used conditions but that the
knowledge of the reactions is insufficient for making any
detailed predictions in this sense.

Taylor Expansion Approximation of the Response Func-
tion. The outcome y (for example the yield) of a synthetic
reaction is dependent on the experimental conditions. These
conditions can be specified by the settings, xi, of the experi-
mental variables (temperature, concentrations, feed rates,
stirring rate, etc.). We can therefore assume that there is some
kind of functional dependence between the result, y, and the
experimental settings, x1, x2,..., xk, and that

y ) f(x1, x2, ..., xk)

In most cases it is very difficult to derive an analytical
expression for the function f, but if the experimental domain is
not too vast, it is reasonable to assume that a truncated Taylor
expansion can give a sufficiently good approximation of f, i.e.
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in which R(0) is a remainder term due to the truncation, and e
is a random error term. R(0) contains the model error due to
truncation, and it becomes smaller the more terms are included
in the model.

This expression is more conveniently written as a polynomial
response surface model:

y ) �0 + �1x1 + �2x2 + ... + �kxk + �12x1x2 + ... +

�jkxjxk + �11x1
2 + ... + �kkxk

2 + e

To assess the roles played by the experimental variables it
will be necessary to obtain estimates of the polynomial
coefficients. Interaction effects are often highly significant and
should be accounted for in the experimentation. In spite of an
increased use of statistically designed experiments in research
and production, it is still a common practice, unfortunately, to
vary one experimental variable at a time. Such experiments
cannot account for any interaction effect, and conclusions from
such experiment are often highly erroneous. To avoid this pitfall,
it is necessary to run multivariate statistical designs so that
possible interaction effects can be identified. In screening
experiments, when the objective is to identify the most important
variables, it is often sufficient to estimate the linear effects and
the two-factor interaction effects. To localise the optimum
experimental conditions it is sometimes necessary also to
estimate the quadratic coefficients. This is an area where
traditional experimental designs (factorial designs, and fractional
factorial designs,2 D-optimal designs,3 response surface designs4)
are highly efficient. However, in explorative synthetic chemistry
the chemists are quite reluctant to use statistical designs mainly
due to the misconception that such designs will contain an
excessive number of experimental runs. Still today many new
methods that have been established from poor experimental
designs are presented. It is in this context the near-orthogonal
experiments will play their roles.

Experimental Space and Model Space. The experimenter
assigns a tentative Taylor expansion model. We should now
distinguish between the experimental space and the model
space. The experimental space is defined by the possible settings
of the experimental variables. With two variables, x1 and x2,
this space is two-dimensional and with three variables it is three-
dimensional, see Figure 1.

The model space is defined by the possible variation of the
variables in the Taylor expansion model. Assume that three
experimental variables are to be analysed and assume also that
it is necessary to consider two-factor interaction effects. The
corresponding Taylor model will be

y ) �0 + �1x1 + �2x2 + �3x3 + �12x1x2 + �13x1x3 +
�23x2x3 + e

and the model space in this case will be six-dimensional and
spanned by {x1, x2, x3, x1x2, x1x3, x2x3}. With a full quadratic

Taylor polynomial, the model space will be nine-dimensional
and spanned by {x1, x2, x3, x1x2, x1x3, x2x3, x1

2, x2
2, x3

2}.
Near-Orthogonal Experiments by SVD Design. The

following iterative procedure is used to generate the experi-
mental design:

(1) Select a set of candidate experiments that define a grid
of points in the experimental domain, i.e. the space spanned
by the variable axes. In our first attempts we have used 11 levels
of each variable, and the sets of candidate experiments are given
by the full 11-level factorial design. For two variables, the grid
contains 121 candidate experiments, for three variables, 1331
candidates; for four variables 14641 candidates; for five
variables, 161051 candidates; and for six variables 1771561
candidates. We assume that this gives a sufficient spread of
the candidate experiments in the experimental domain. This
defines the candidate design matrix Dc.

(2) Suggest the response surface model. A candidate model
matrix, Xc, is then constructed by appending columns corre-
sponding to each term in the model (cross-products (interaction)
and squares). The columns of Xc define the model space. The
matrix Xc is usually very large. Xc is then factored by singular
value decomposition, SVD

Xc ) USVT

The vectors in U and V are orthonormal, S is a diagonal
matrix of the singular values, σi. The vectors in V are the
eigenvectors of the variance-covariance matrix, XTX, and the
vectors in U are the eigenvectors of the correlation matrix, XXT.
The columns of U define an orthonormal basis for the column
space of Xc, and the columns of V define an orthonormal basis
for the row space of Xc. The singular values have the following
properties: the eigenvalues of the information matrix, Xc

TXc

are equal to σi
2 and the eigenvalues to the dispersion matrix

(Xc
TXc)-1 are equal to σi

-2. Another important property is that
the eigenvector in V corresponding to the largest singular value
points in the direction of the largest variance of the row space
of Xc, i.e. the model space.

When the number of candidate experiments (rows in Xc), is
larger than the number of columns (the dimension of the model
space) the maximum rank, r, of Xc equals the dimensions of
the model space. In that case, when all singular values, σ1,...,
σr are distinctively different from zero, the singular vectors, vi,
(i ) 1,..., r) will span the model space. It was shown by Eckhart

Figure 1. Experimental space with two variables and model space
with three variables.

Vol. 13, No. 4, 2009 / Organic Process Research & Development • 799



and Young5 as early as in 1936 that SVD gives an optimal low-
rank approximation of any matrix.

(3) The next step is to identify which row vector, xi, in Xc

is most parallel to the first singular vector, v, (i.e., corresponding
to the largest singular value), in V as evaluated from the
maximum absolute value of the scalar product |xj v1|Max. Then,
identify which row in the candidate design matrix, Dc, corre-
sponds to this first selected row, xi, in Xc. This yields the first
experiment in the experimental design matrix. This experiment
will represent a direction through the candidate design account-
ing for the largest variance, thus being of importance when
finding a minimum set of experiments that efficiently span the
variations of the model space.

(4) When the first experiment has been chosen, the next step
is to remove the component in this direction from all remaining
rows in Xc. The resulting matrix, Xc-1 will have the rank exactly
one less than Xc and the corresponding rows, k are computed
as

x̂k ) xk - (xi,xk
T)/(xi,xi

T)·xi

Xc-1 is then factored by SVD and the row that is most
parallel to the first singular vector is determined. The corre-
sponding row in Dc is identified. This gives the second
experiment in the design.

This procedure is repeated until the desired experiments have
been selected. When r experiments have been selected experi-
ments, they will span the model space.

The singular vectors, vi, are orthogonal, and the selected rows
in Xc will be as orthogonal as possible. The selected experiments
will thus peel off the dimensions of the model space, one
experiment by one. Since the experiments are near-orthogonal,
each new experiment will provide as much new information
as possible. This permits a systematic search of the model space.
The design is interruptible, and the experimenter can stop when
a satisfactory result has been obtained. When enough experi-
ments have been run, it is possible to fit the suggested model.

The principle for the selection of experiments is illustrated
in Figure 2.

The algorithm for generating the design is illustrated in
Figures 3 and 4.

We have up to now determined designs with 3, 4, and 5
variables for fitting linear, second-order interaction models, and
quadratic models. The candidate experiments were defined by
11-level full factorial designs. These designs are summarised
in the Appendix.

A Note on Computations. The selection procedure de-
scribed above is new and has not yet been implemented in any
commercial software. We have used the MATLAB software6

for determining the design matrices. The singular vectors, vi in

V are identical to the loading vectors pi obtained in principle
component decomposition of a matrix X and X ) TPT. The
matrix P is defı́ned by the loading vectors, P ) [p1 p2... pr].
For this reason, any commercial software that can perform
principal component analysis7 can be used to determine the
singular vectors.

Distribution of the Selected Experimental Points in the
Model Space. We show an example with three experimental
variables. The distribution of the experimental points in the

(1) Optimising Organic Reactions, presented at the Scientific Update
Conference, Basel, Switzerland, 29-30 October , 2007.

(2) Box, G. E. P.; Hunter, J. S.; Hunter, W. G. Statistics for the
Experimenters: Design, InnoVation, and DiscoVery; Wiley-Intersciences:
Hoboke, NJ, 2005.

(3) (a) Nalimov, V. V.; Golikova, T. I.; Mikeshina, N. G. Technometrics
1970, 12, 799–812. (b) FedorovV. V. Theory of Optimal Experiments;
Academic Press: New York, 1972.

(4) Box, G. E. P.; Draper, N. R. Response Surfaces, Mixtures, and Ridge
Analysis; Wiley-Intersciences: Hoboken, NJ, 2007.

(5) Eckhart, C.; Young, G. Psychometrika 1936, 1, 211–218.

(6) MATLAB; The MathWorks, Inc.: Natick, MA 01760, U.S.A, 2007.
(7) Some examples of commercial software are: SIMCA, available from

Umetrics Inc. 17 Kiel Avenue, Kinnelon, NJ 07405, U.S.A.; Unscram-
bler, available from CAMO Smart, 1480 Route 9 North Suite 209,
Woodbrodge, NJ 07405, U.S.A.; SIRIUS, available from Pattern
Recognition Systems AS, Bergen High_Tech Center, Thorm. Gt 55,
NO-5008 Bergen, Norway.

Figure 2. Orthogonal vectors defining experiments in a three-
dimensional model space.

Figure 3. Singular value decomposition of the candidate model
matrix Xc.

Figure 4. Selection of experiments that are parallel to the
singular vectors.
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experimental domain of SVD designs for a linear model, an
interaction model, and a quadratic model are shown in Figure 5.

From Figure 5 it is seen how such designs in this case (three
variables) can be used in a sequential manner; a linear model
can be fitted from four experiments. If this is unsatisfactory,
an interaction model can be established by adding a few
complementary experiments. A quadratic model can be estab-
lished from the interaction model design by adding a few
complementary experiments in the interior of the search space.

An Example: Bromination of an Acetal. We show an
example of a SVD design in the bromination of the ethylene
acetal from 2-butanone, see Scheme 1.

Laboratory-scale (10 mmol) experiments had afforded yields
in the range 80-84%. Four variables were investigated, and
their variations were chosen to embrace the hitherto known best
conditions. The variables and their settings are given in Table
1. As interactions are likely, a second-order interaction Taylor
model was assigned. The design and the yields obtained are
given in Table 2. The experiments carried out by the design
were run on larger scale (0.1-0.2 mol). The evolution of the
yield was monitored by gas chromatography (internal standard

technique). After 4 h the increase in yield had become
insignificant, and the yields given in Table 2 were obtained after
4 h.

The second orthogonal experiment, no. 2, gave a highly
increased yield compared to what was previously known as the
“best” conditions. Under severe time constraint, the study could
have stopped here. By using all the experiments in the design,
the coefficients of the Taylor polynomial were determined using
PLS regression8, and the estimated model is

y ) 77.71 + 8.92x1 - 0.71x2 - 3.11x3 - 0.18x4 -
6.83x1x2 - 1.24x1x3 + 2.66x1x4 + +0.69x2x3 +

6.27x2x4 + 1.64x3x4 + e

where e is a random error term.
The model is interpreted as follows. To increase the yield:

The temperature, x1 should be adjusted to its high level (30
°C); the concentration, x2 should be low; the stirring rate, x3,
should be low; and the rate of addition of bromine, x4, should
be low. With these setting, the interaction effect would have a
maximum beneficial influence. The predicted yield is actually
102%. We can understand the model as follows: The reaction
is slightly exothermal, and to prevent unwanted temperature
increase, bromine should be added slowly to the acetal at a not
too high concentration. To dissipate heat from the reaction
mixture, stirring is necessary, but it is probably sufficient at
any level in the experimental domain. With a rapid bromine
addition to a concentrated solution of the substrate, minor
amounts <5% of higher brominated products were observed.
A response surface projection showing the variation in yield
vs x1 and x2 when x3 and x4 were set to their low level is seen
in Figure 6

We have tested the suggested improved conditions in a scale-
up run using 1 mol of substrate, see Experimental Section. The
isolated yield was 98%, and the purity was >97% (GC, 1H
NMR).

Figure 5. Distribution of experimental points in SVD designs.

Scheme 1

Table 1. Experimental variables and the levels of their
settings

levels of the settings

variables -1 0 +1

x1: reaction temperature/°C 0 1.5 30
x2: concentration of acetal/M 0.2 0.3 0.4
x3: stirring rate/rpm 250 325 400
x4: rate of bromine addition/meq min-1 20 50 70

Table 2. Experimental design and yields obtained

design yield

exp. no. x1 x2 x3 x4 y

1 1.0 1.0 1.0 1.0 87.4
2 1.0 -1.0 -1.0 -1.0 95.8
3 -1.0 1.0 -1.0 1.0 79.5
4 -1.0 -1.0 1.0 -1.0 63.7
5 -1.0 -1.0 0.2 1.0 53.9
6 -1.0 1.0 1.0 -1.0 68.7
7 1.0 1.0 1.0 -1.0 58.8
8 1.0 -1.0 1.0 -1.0 93.5
9 1.0 -1.0 -1.0 1.0 94.0
10 -1.0 -1.0 -1.0 -1.0 77.1
11 1.0 -1.0 1.0 1.0 80.9
12 0 0 0 0 88.6

Figure 6. Response surface projection: yield, y, vs the reaction
temperature, x1, and the initial concentration of the acetal, x2. The
stirring rate, x3, and the rate of bromine addition, x4, are set to
their low values.
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Discussion
The experimental designs based on near-orthogonal experi-

ments are intended as tools in explorative synthetic experimen-
tation when the objective is to rapidly determine useful
experimental conditions. Since the experimental settings in
different experimental runs are nearly orthogonal to each other,
the suggested strategy makes it possible to run the experiments
sequentially, one by one, in order to systematically investigate
the experimental space. It may well be possible that sufficiently
good experimental conditions can be found after only a few
experimental runs. In this respect, the designs based on
orthogonal experiments are interruptible. We assume that this
feature will make the suggested strategy attractive when time
constraints impose limitations as to the number of possible
experiments. We have previously shown that a design based
on orthogonal experiments can be used for designing combi-
natorial libraries.9 In this context it was demonstrated that such
designs are A-Optimal: they minimise the trace of the dispersion
matrix (XTX)-1. If the experimental settings are adjusted exactly
as specified by the singular vectors in VT, the designs become
D-Optimal. This is possible when all variables are continuous
over their range of variation and when a Taylor expansion model
with only linear terms is attempted. If some variables are discrete
and investigated on only two levels, (1, or if a higher-order
model is attempted, it is unlikely that the experimental vectors
can be adjusted to be parallel to the singular vectors. In such
cases, the algorithm presented above can be used.

It was pointed out by one reviewer that the designs presented
in this paper have inferior statistical properties compared with
fractional factorial designs and D-Optimal designs. We agree
with this criticism. When compared with fractional factorial
designs or D-Optimal designs, the designs based on near-
orthogonal model vectors have larger condition numbers, λMax/
λMin (the ratio of the largest and smallest eigenvalues of the
dispersion matrix (XTX)-1. It should, however, be borne in mind
when and where an experimental design is laid out. If the
objective is to fit a model with high precision in the estimated
model parameters, factorial, designs, fractional factorial designs,
composite response surface designs or D-Optimal designs
should be used. The objective is then the model fit. If, on the
other hand, the objective is to rapidly find improved experi-
mental conditions and to have some information as to the most
influencing variables, the designs based on near-orthogonal
experiments are likely to be sufficiently good.

Experimental Section
Chemicals. 2-Ethyl-2-methyl-1,3-dioxoloane (99%) was

obtained from Aldrich, dichloromethane (Puriss.), and bromine
(Puriss.) were obtained from Merck, and 1,2-dichlorobenzene
(Puriss.) was obtained from Fluka and used as delivered.

GC Analyses. A Varian 3400 gas chromatograph equipped
with a flame ionisation detector coupled to a Varian 4400
integrator was used. The column was SPB-5, 30 m, 0.35 mm
i.d., operated with the following temperature program: 70 °C,

5 min; 10 °C min-1; 180 °C. The yields in the screening
experiments were determined from the peak areas using 1,2-
dichlorobenzene as an internal standard.

1H NMR spectra were recorded at 400 MHz and 13C NMR
at 100 MHz using a Varian Mercury spectrometer.

General Procedure for the Screening Experiments in
Table 2. The settings of the experimental variables, x1-x4 are
given in Table 1.

The reactions were run in a four-necked 1 L mantled
cylindrical reactor. The reaction temperature was controlled by
circulating ethanol through the cooling mantle using a Julabo
F70 thermostat. The flask was mounted with an anchor-shaped
Teflon stirrer for which the stirring rate was adjusted using a
Peaktech 2780 Tachometer, a reflux condenser connected to a
HBr trap, a 250 mL pressure-equalised dropping funnel with a
nitrogen inlet, and a temperature probe (Pt 100 sensor) dipping
into the reaction mixture.

2-Ethyl-2-methyl-1,3-dioxolane (11.62 or 23.24 g, 0.10 or
0.20 mol, respectively) and an accurately weighed amount (ca.
6 g) of 1,2-dichlorobenzene (internal standard) were placed in
the reactor and dissolved in dichloromethane to give the initial
concentration, x2, of the acetal.

The stirring rate was adjusted to x3, and the temperature was
adjusted to x1. After 10-15 min, the temperature had reached
the set value. Bromine (2 equiv) dissolved in 50 mL of
dichloromethane was placed in the dropping funnel, and a slow
stream of nitrogen was passed through the flask via the side
arm of the dropping funnel. The rate of bromine addition was
adjusted to x4. Samples, 0.5 mL, were withdrawn at regular
time intervals, washed with 5% aqueous sodium bisulfite,
filtered through a plug of cotton, diluted with dichloromethane
(2 mL) and analysed by GC. After 4 h (measured from the
start of bromine addition) the changes in yields had become
insignificant. These results are shown in Table 2.

Synthesis of 2(1-Bromoethyl)-2-(bromomethyl)-1,3-diox-
oloane. The reactor was a four-necked, 2-L mantled cylindrical
flask equipped as for the screening experiments, but using a
500 mL dropping funnel. The flask was charged with 2-ethyl-
2-methyl-1,3-dioxolane (116.2 g, 1.00 mol) and 1 L of dichlo-
romethane. The stirring rate was adjusted to 300 rpm, and the
temperature was adjusted to 30 °C. When the temperature was
stabilised, bromine (100 mL, 2 mol) dissolved in 250 mL of
dichloromethane was added over 20 min, and the mixture was
stirred at 30 °C for 4 h.

Workup: Water (300 mL) was added, and the mixture was
stirred. Powdered sodium bisulfite was added carefully until
the yellowish colour of unreacted bromine had disappeared. The
organic layer was separated and washed a second time with
300 mL of water, and finally with 300 mL of saturated aqueous
sodium bicarbonate to remove any remaining trace of Hbr. The
organic layer was dried over anhydrous magnesium sulfate
overnight. Filtration and evaporation of the solvent gave 267.9
g (98%) of 2-(1-bromoethyl)-2-bromomethyl-1,3-dioxolane. The
product was >97% pure. The product can be further purified
by distillation, bp 82 °C/13 mbar. Elemental analysis: Calcd.
(C 26.30%, H 3.68%, Br 58.33%). Found (on the crude product)
(C 25.71%, H 3.77%, Br 57.89%). 1H NMR δ 1.69 (d, J ) 7.0
Hz, 3H), 3.57 (d, J ) 11.1 Hz., 1 H), 3.79 (d, J ) 11.1 Hz,
1H), 4.13-4.18 (m, 4 H), 4.45 (q, J ) 7.0 Hz, 1H); 13C NMR
δ 20.8, 35.0, 50.6, 67.7, 109.2.

(8) Pirouette for Windows, available from Infometrix Inc., P.O.Box 1528,
Woodinville, WA 98072, U.S.A. The MODDE 8.0 program was used.
It is available from Umetrics Inc., 17, Kiel Ave, Kinnelon. NJ 07404,
U.S.A.

(9) Carlson, R.; Carlson, J. E.; Grennberg, A. J. Chemom. 2001, 15, 455–
474.
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Appendix: A Design Matrices

A.1. Linear Models

A.2. Models with Linear Terms and Cross Terms

A.3. Quadratic Models, Including Linear Terms and Cross
Terms

Received for review December 30, 2008.

OP800322H

Table A.1.1. Three variables

exp. no. x1 x2 x3

1 1 1 1
2 -1 -1 -1
3 1 -1 1
4 1 1 -1

Table A.1.2. Four variables

exp. no. x1 x2 x3 x4

1 1 1 1 1
2 -1 -1 -1 -1
3 1 -1 1 -1
4 1 1 -1 -1
5 1 -1 -1 1

Table A.1.3. Five variables

exp. no. x1 x2 x3 x4 x5

1 1 1 1 1 1
2 -1 -1 -1 -1 -1
3 1 -1 -1 -1 -1
4 -1 1 -1 1 -1
5 1 1 -1 -1 1
6 1 -1 -1 1 1

Table A.2.1. Three variables

exp. no. x1 x2 x3

1 1 1 1
2 -1 1 -1
3 1 -1 -1
4 -1 -1 1
5 -1 -1 -1
6 1 -1 1
7 1 1 -1

Table A.2.2. Four variables

exp. no. x1 x2 x3 x4

1 1 1 1 1
2 1 -1 -1 -1
3 -1 1 -1 1
4 -1 -1 1 -1
5 -1 -1 0 1
6 -1 1 1 -1
7 1 1 -1 -1
8 1 -1 1 -1
9 1 -1 -1 1
10 -1 -1 -1 -1
11 1 -1 1 1

Table A.2.3. Five variables

exp. no. x1 x2 x3 x4 x5

1 1 1 1 1 1
2 -1 -1 -1 1 1
3 -1 0 1 -1 -1
4 1 1 -1 -1 -1
5 1 -1 1 -1 1
6 1 -1 -1 1 -1
7 -1 1 -1 -1 1
8 -1 1 1 1 -1
9 -1 -1 -1 -1 -1
10 1 1 -1 1 1
11 -1 -1 1 1 -1
12 -1 1 -1 1 -1
13 -1 -1 1 -1 1
14 1 1 1 1 -1
15 1 1 1 -1 1
16 1 -1 1 -1 -1

Table A.3.1. Three variables

exp. no. x1 x2 x3

1 1 1 1
2 1 -1 -1
3 -1 1 -1
4 -1 -1 1
5 0 0 0
6 1 1 -1
7 -1 -1 -1
8 -1 1 1
9 1 0 1
10 1 0 0

Table A.3.2. Four variables

exp. no. x1 x2 x3 x4

1 -1 1 1 -1
2 -1 -1 -1 1
3 1 -1 1 1
4 1 1 -1 -1
5 0 1 0 1
6 1 -1 -1 -1
7 -1 -1 1 -1
8 -1 0 -1 -1
9 1 1 1 -1
10 -1 0 1 1
11 1 0 -1 1
12 1 1 1 1
13 -1 1 -1 1
14 -1 1 1 0
15 1 0 0 -1

Table A.3.3. Five variables

exp. no. x1 x2 x3 x4 x5

1 1 1 1 1 1
2 -1 1 1 -1 -1
3 1 -1 -1 1 -1
4 -1 -1 -1 -1 1
5 1 -1 1 -1 -1
6 -1 1 -1 1 -1
7 -1 -1 1 1 1
8 1 1 -1 -1 1
9 0 0 0 0 0
10 -1 1 1 -1 1
11 1 -1 -1 1 1
12 1 -1 1 -1 1
13 1 1 -1 -1 -1
14 1 1 1 1 -1
15 1 1 -1 1 1
16 -1 1 1 1 1
17 -1 -1 -1 1 0
18 -1 1 -1 -1 0
19 0 1 1 1 1
20 1 1 1 0 -1
21 1 0 -1 -1 -1
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